regulatory and quality system professionals | 919.313.3960
FDA to Create a Digital Health Unit

FDA to Create a Digital Health Unit

The FDA has announced that it is forming a digital health unit within the Center for Devices and Radiological Health (CDRH). The digital health unit will develop software and technical expertise to assist manufacturers with devices that incorporate digital health technologies, as well as assessing digital health improvements and monitoring and reporting on the digital health premarket review timelines. Digital health includes categories such as mobile health (mHealth), health information technology (IT), wearable devices, telehealth and telemedicine, and personalized medicine. The creation of this unit is part of the Medical Device User Fee Act (MDUFA). MDUFA is the program that authorizes FDA to collect user fees from medical device manufacturers in support of streamlining the regulatory approval process. Negotiations between FDA and the medical device industry regarding the fourth version of MDUFA are currently underway. As part of the negotiation process, FDA proposed to hire technical experts to staff the new digital health unit. In addition to MDUFA, the 21st Century Cures Act requires FDA to develop a framework for evaluating real world evidence. FDA envisions that the digital health unit will monitor and implement the use of real world evidence to support the regulatory approval process. FDA issued a draft guidance in July 2016, Use of Real-World Evidence to Support Regulatory Decision-Making for Medical Devices, that identifies how real world data will be evaluated to determine if it is sufficiently relevant and reliable enough to be used. While the FDA sees the digital health unit as a means of streamlining the regulatory approval process, it also recognizes it will require coordination with industry and other government agencies because digital health touches on...
Cybersecurity’s Impact on Health Systems

Cybersecurity’s Impact on Health Systems

We are currently seeing significant technological advances in medical devices, hospital networks and patient care. As medical devices become increasingly interconnected via the Internet, hospital networks, other medical devices, and smartphones, there is an increased risk of exploitation of cybersecurity vulnerabilities, some of which could affect a device’s performance, functionality and safety to the patient. In recent years, researchers have demonstrated the potential threat of medical device and healthcare system hacking. They have been able to tamper with pacemakers, insulin pumps and other devices, which, if hacked, could cause serious harm, including death, to a patient. Recently, the FDA identified cybersecurity vulnerabilities in St. Jude Medical’s implantable cardiac devices and the corresponding Merlin@home Transmitter. These vulnerabilities, if exploited, could allow an unauthorized user, i.e., someone other than the patient’s physician, to remotely access a patient’s RF-enabled implanted cardiac device by altering the Merlin@home Transmitter. While no patients were harmed, this serves as a warning that similar devices containing configurable embedded computer systems can be vulnerable to cybersecurity intrusions and exploits, as well. To address these technological risks, in December 2016, the FDA finalized the guidance, “Postmarket Management of Cybersecurity in Medical Devices.” In reference to the guidance, Suzanne B. Schwartz, M.D., M.B.A., FDA’s Associate Director for Science and Strategic Partnerships, at the Center for Devices and Radiological Health stated that, “manufacturers should build in cybersecurity controls when they design and develop the device to assure proper device performance in the face of cyber threats, and then they should continuously monitor and address cybersecurity concerns once the device is on the market and being used by patients.” The new guidance...
Colliding Cultures: Software Development and the Medical Device Industry

Colliding Cultures: Software Development and the Medical Device Industry

Part 1 – Medical Device Software, the FDA and the US Congress Preface: In any given 2-week period, an average of 15% to 20% of the applications on my smartphone have new versions to fix software bugs. Others I speak with experience similar statistics. And, that doesn’t include how often my smartphone software crashes while executing tasks it was intended to perform. We don’t complain about it. Instead, we accept this state of constant, almost continuous, software revision to fix bugs as a matter of “how things are.” We have come to terms with the fact that the normal state of software is for it to be broken, in need of repair and “acceptably” functional, while simultaneously defective. One might think, given the prevalence and importance of software, we would reject software disrepair as normal – especially for critical applications that impact safety. But, the evidence suggests otherwise. If you perform a search on the FDA Medical Device Recall Database from January 1, 2013 to August 14, 2015, you will see 500 device recalls reported. This is the maximum number of rows the FDA report supports in a single query (meaning more than 500 devices were recalled). Enter the keyword “software” into the search, and the query returns 344 recalls due to medical device software. Reviewing randomly through these notices confirms that software issues played an instrumental – or the only – role in the recalls. And, all but nine are Class I or Class II recalls in response to a risk of temporary or serious adverse health consequences due to software problems. Is software so difficult and challenging...
Cybersecurity – A Real Threat to Medical Devices

Cybersecurity – A Real Threat to Medical Devices

The FDA is Taking Notice of Medical Device Cybersecurity The FDA just issued a Safety Communication on cybersecurity vulnerabilities of the Hospira Symbiq Infusion System. The Hospira Symbiq Infusion System is a computerized pump designed for the continuous delivery of general infusion therapy for a broad patient population. The pump is mostly used in hospitals, or other acute and non-acute health care facilities, such as nursing homes and outpatient care centers. This infusion system can communicate with a Hospital Information System (HIS) via a wired or wireless connection over facility network infrastructures. Unfortunately, it appears that it’s possible to access this pump remotely through a network, allowing unauthorized users to control the pump and change the dosage it delivers. This can potentially harm the patient. While it doesn’t appear that any unauthorized access occurred with this particular product, and Hospira is no longer selling this product, cybersecurity is still a real concern. It will be critical for manufacturers to implement appropriate safeguards now that more and more devices are connecting remotely to healthcare networks. In June 2013, the FDA outlined good practices to follow in Cybersecurity for Medical Devices and Hospital Networks. In this communication, the FDA recommends that medical device manufacturers and health care facilities take steps to assure that appropriate safeguards are in place to reduce the risk of failure due to cyberattack. These attacks could be initiated by the introduction of malware into the medical equipment or unauthorized access to configuration settings in medical devices and hospital networks. As products rely more heavily on networked communication, medical device cybersecurity is going to become an even greater concern....